## YTC America Inc.HIGH ENERGY DENSITY

## **Development of Carbon Nanotube-Based Supercapacitors**

We have developed supercapacitors utilizing electrodes made of binder-free carbon nanotube (CNT) / activated carbon (AC) composites. Due to the absence of organic binder our supercapacitors exhibit a significantly higher volumetric capacitance of ~20 F/cc compared to conventional supercapacitors while maintaining low resistance resulting in smaller package size. Our cells pass 1,000 hour float tests at 2.7V and temperatures between -35°C and 70°C. Flat format >300 F supercapacitor pouch cells have been demonstrated that can be integrated into automotive panels for autonomous power.

Peak Power Demand



Binder free CNT/AC electrodes provide 20% higher energy density than conventional ACbased electrodes

HIGHLIGHTS

Supercapacitors are sources of power for applications such as emergency door lock/unlock, active vehicle stability control, regenerative braking

The flat pouch-cell format allows installation in automotive panels

85 F capacitance as mono-cell,

Discharge time(s)

Time (h)

>300 F for a stacked cell possible

United States Patents US 10,840,032 and US 10,981,794

| TECHNICAL DATA                |                                                  |  |
|-------------------------------|--------------------------------------------------|--|
| Typical Cell Values           | 85 F as mono, > 300 F stacked cell               |  |
| Pouch Cell Format             | 10 cm x 25 cm x 3 mm                             |  |
| Energy Density(*)             | 19 Wh/L                                          |  |
| Power Density (*)             | 12 kW/L                                          |  |
| Max. Operation Voltage        | 2.7V                                             |  |
| ESR                           | 35 m $\Omega$ at 1 kHz / 42 m $\Omega$ at 0.1 Hz |  |
| Temperature Range             | -35 to 70 °C                                     |  |
| Leakage Current               | <10 mA after 15 hours                            |  |
| (*) based on electrode volume |                                                  |  |
| CONTACT INFO: INFO@YTCA.COM   |                                                  |  |

2021 © Copyright by YTC America, Inc. (YTCA). Information in this document is subject to change without notice. No reproduction is permitted without written approval from YTCA